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Neurons in a small number of brain structures detect rewards

and reward-predicting stimuli and are active during the

expectation of predictable food and liquid rewards. These

neurons code the reward information according to basic terms of

various behavioural theories that seek to explain reward-directed

learning, approach behaviour and decision-making. The involved

brain structures include groups of dopamine neurons, the

striatum including the nucleus accumbens, the orbitofrontal

cortex and the amygdala. The reward information is fed to brain

structures involved in decision-making and organisation of

behaviour, such as the dorsolateral prefrontal cortex and

possibly the parietal cortex. The neural coding of basic reward

terms derived from formal theories puts the neurophysiological

investigation of reward mechanisms on firm conceptual grounds

and provides neural correlates for the function of rewards in

learning, approach behaviour and decision-making.

Addresses
Department of Anatomy, University of Cambridge, Downing Street,

Cambridge CB2 3DY, UK

e-mail: ws234@cam.ac.uk

Current Opinion in Neurobiology 2004, 14:139–147

This review comes from a themed issue on

Cognitive neuroscience

Edited by John Gabrieli and Elisabeth A Murray

0959-4388/$ – see front matter

� 2004 Elsevier Ltd. All rights reserved.

DOI 10.1016/j.conb.2004.03.017

Introduction
Although rewards are environmental objects that interact

with the brain through primary sensory receptors, they

come in different sensory modalities and act on the brain

without specialised receptors. Thus, the rewarding

aspects of environmental stimuli need to be extracted

from a variety of primary sensory sources. Rewards cannot

be described by their physical properties alone. That is,

the basic variables of reward information cannot be

gleaned from the common parameters of sensory systems,

such as size and position of receptive fields and intensity

and contrast of stimuli. Rather, their function is defined

by the behaviour of the organism and formalised by

behavioural learning and motivational theories. Much

progress has been made in understanding the basic para-

meters that determine the influence of rewards on the

behaviour of the organism through the study of the

underlying brain mechanisms. The present review is an

attempt to summarise our knowledge of the basic com-

ponents of reward information that are extracted from

multisensory stimuli and processed by the reward

mechanisms of the brain. Despite the large variety of

non-nutrient objects that constitute rewards for humans,

this review primarily considers food and liquid rewards

that can be delivered in a quantifiable way to monkeys,

which are the main subjects for the studies used here.

Basic theoretical reward terms
According to animal learning theory, rewards have three

basic functions in behaviour. First, they induce learning,

as they make subjects come back for more (positive

reinforcement); second, they induce approach and con-

summatory behaviour for acquiring the reward object; and

third, they induce positive emotions, which are inherently

difficult to investigate in animals. Rewards can serve as

goals of behaviour if the reward and the contingency

between action and reward are represented in the brain

during the action [1]. By contrast, punishers induce

avoidance learning, withdrawal behaviour and negative

emotions.

As the intensity of behavioural reactions to rewards is

graded, rewards appear to have motivational value that

permits the organism to compare and choose among

different rewards. The influence of rewards on behaviour

depends in many instances on the vegetative drive state

of the organism. However, additional factors determine

reward value. For example, a subject performs a reward-

directed action with certain intensity but reduces that

intensity after being exposed to a more desirable object

(negative contrast effect) [2], and this effect seems to be

exacerbated when another animal receives visibly more

reward for the same effort [3].

Reward-directed learning can occur by associating a sti-

mulus with a reward (Pavlovian conditioning) or by asso-

ciating an action with a reward (operant conditioning),

with more complex associations among stimuli, actions

and outcomes occurring during various stages of learning.

Environmental stimuli and objects acquire reward value

through past experience in a Pavlovian manner and there-

fore come to predict the associated rewards. It is usually

difficult to distinguish exactly between the reward-pre-

dicting stimulus and the actual primary reward [4], and for

simplicity we can call a reward an object that acts on the

body through proximal somatosensory receptors, such as

a piece of food or a drop of liquid reaching the mouth.

Learning requires temporal contiguity between the con-

ditioned stimulus, or movement, and the reinforcer, as

well as the more frequent occurrence of the reinforcer in
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the presence rather than the absence of the conditioned

stimulus (contingency). Analysis of the conditions of

learning reveals that rewards that are fully predicted do

not contribute to learning [5]. Rather, the acquisition of

associative strength of a conditioned stimulus depends

on the discrepancy between the maximal associative

strength sustained by the reinforcer and the current

strength of the predictive stimulus (prediction error)

[6] and requires in some situations the uncertainty of

the reinforcer [7]. Uncertainty is different from probabil-

ity; it is highest at probability (p)¼0.5 and decreases

toward lower and higher probabilities, where reward

absence or presence becomes increasingly certain. Uncer-

tainty can be assessed as entropy, variance, and the

associability term of attentional learning theories [7].

According to game theory and microeconomics, the value

of rewards for behavioural reactions and decisions can be

assessed from the multiplicative product of magnitude

and probability of the future reward (expected reward

value). In addition, the delay to the future reward reduces

the reward value hyperbolically [8]. However, the simple

products of magnitude, probability and delay do not

always explain how individuals value rewards at all prob-

abilities, and the closely related terms ‘utility’ [9] and

‘prospect’ [10] allow a better assessment of the influence

of rewards on decision-making. Behavioural preference

tests serve to establish the subjective values of the

different reward objects. In essence, the reward that is

most preferred by an individual, and selected when a

choice is available, has the highest utility, irrespective of

its particular magnitude, probability or delay. Several

additional factors contribute to the subjective perception

of reward value, such as the individual’s history, their

personal assets, their emotional state and the way in

which the decision problem is posed (framing). Indivi-

duals will try to maximize the utility of the outcome and

maintain its stability, given the environmental situation

and the behaviour of the other players (Nash equili-

brium). Thus, schematically, learning theory describes

how organisms react to rewards and acquire new reac-

tions, and game theory and microeconomics assess the

value of rewards for decision-making. There are similar

basic notions and considerable overlaps among these

theories, such as associative strength (learning theory)

corresponding to value (game theory), and contrast cor-

responding to utility and framing. Efficient conditioned

behaviour according to learning theory can be viewed as

a form of game that reaches Nash equilibrium, such as

matching behaviour [11], in which players reach optimal

returns by adapting their response rates to the relative

frequencies of rewards.

Behavioural ecology uses the basic terms of game theory

for an evolutionary understanding of reward functions

[12,13]. The utility of a reward and its maximisation

contribute to fitness for survival. The game for reward

is played against nature and against other players, and the

reward value is assessed as payoff by subtracting cost

from gain. According to this view, evolutionarily stable

behavioural strategies (ESS) evolve that help to max-

imise the payoffs, and brains are selected that are able to

calculate, compare and maximise payoff, maintain ESSs

and thus maximise the fitness for survival. Without

the evolutionary perspective, animal learning and game

theory might be short sighted and prone to local optima

but long-term errors.

Forms of reward coding
On the basis of learning and game theories, we can con-

ceptualise how individual neurons can process rewards

for maximal use by using behavioural tasks that are

commonly employed by experimenters for investigating

specific brain structures and behavioural processes, such

as delayed response tasks for studying frontal cortex and

basal ganglia, and Pavlovian learning for assessing reward

associations. The reviewed behavioural tasks often give

the animal only the choice between correct and incorrect

responses, whereas choice tasks need to have a higher

degree of freedom by permitting the subject to choose,

for example, among different reward objects or among

similar rewards occurring at different schedules. Tasks

occasionally employ unrewarded single or sequential

trials that nevertheless require correct performance, after

which the subject can advance to a rewarded trial type. In

the simplest form of reward processing neurons detect

the receipt of a reward by an increase or decrease in

activity after the reward has occurred (Figure 1a). As

novel external stimuli are associated with rewards

through Pavlovian conditioning, they become reward

predictors. Through learning, these reward-predicting

stimuli permit subjects to prepare to collect the reward

long before it becomes available, thereby providing a

substantial advantage over competitors. Some neurons

respond to these reward-predicting stimuli (Figure 1b).

After the behavioural reaction towards the reward has

occurred but before the reward has been consumed, it is

useful to maintain a neural representation of the reward,

such that attention is maintained and possible interfer-

ence is avoided. Some neurons maintain elevated activ-

ity during this reward expectation period (Figure 1c).

When subjects perform behavioural reactions to obtain

rewards, neural representations about the action, the

reward and their contingency should be maintained

during a period in which the movement toward the

reward is being prepared and executed (Figures 1d

and e). This information would be integrated into the

movement-related activity and have an influence on the

neural processing that underlies the seeking and acquisi-

tion of goal objects.

Coding of basic reward terms
Neurons respond to the receipt of different food and

liquid rewards and discriminate among rewards in the
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orbitofrontal cortex [14–16], the amygdala [17,18] and

the striatum including the nucleus accumbens [19,20].

Orbitofrontal and striatal neurons can discriminate among

conditioned stimuli on the basis of the predicted rewards

but not on the basis of spatial or object components

[15,20]. Other neurons in these structures show differ-

ential activations during the expectation of food and

liquid rewards following the behavioural reaction

[15,20]. Neurons in the dorsolateral prefrontal cortex

and the striatum show activations during the mnemonic

and movement preparatory periods of delayed response

tasks, which reflect differentially the predicted food and

liquid rewards [20,21]. When an animal is presented with

a reward they prefer more than another, about two-thirds

of reward-discriminating orbitofrontal and striatal neu-

rons are strongly activated, whereas the remaining neu-

rons show the opposite relationship and are activated with

greater strength by the less preferred reward [15,20].

Neurons in several brain structures show stronger task-

related activity in all forms of reward-related activations

(shown in Figure 1) in rewarded compared to unrewarded

trials. The structures include the striatum [22–28], the

dorsolateral prefrontal cortex [29,30��], the medial pre-

frontal cortex [29], the orbitofrontal cortex [31], the ante-

rior cingulate cortex [32��], the perirhinal cortex [33], the

superior colliculus [34], the pars reticulata of substantia

nigra [35] and the dopaminergic pars compacta of sub-

stantia nigra [36,37]. Inverse reward relationships, with

stronger task-related changes in unrewarded rather than

rewarded trials, occur in some neurons of the dorsolateral

prefrontal cortex [38��], the orbitofrontal cortex [31], the

striatum [34] and the pars reticulata of substantia nigra [35].

Neurons show stronger task-related activations with

higher magnitude of liquid rewards in all reward-related

forms in the striatum [39], the dorsolateral prefrontal

cortex [40,41�], the orbitofrontal cortex [42,43], the par-

ietal cortex [44,45], the posterior cingulate cortex [46]

and the dopaminergic pars compacta of substantia nigra

[47,48]. Some neurons in the striatum and in motor re-

gions of the frontal lobe, such as premotor cortex, frontal

eye fields and supplementary eye fields, show enhanced

activity with increasing reward magnitude, or in the

presence compared to absence of reward, which could

be related to the movement changes induced by the

rewards [41�,49]. About one-third of reward-modulated

striatal neurons show increasing task-related activations

with decreasing reward size [39].

The probability of receiving a reward is a defining factor

of reward value according to game theory. Dopamine

neurons show increasing phasic responses to conditioned

stimuli predicting reward with increasing probability

[50,51], and similar increases occur in parietal cortex

and striatum during mnemonic and movement prepara-

tory task periods and movements [44,45,52]. However,

reward responsive tonically active neurons (TANs) in the

striatum do not appear to be sensitive to reward prob-

ability [51], which indicates that not all neurons sensitive

to reward code its value as defined by game theory.

Increasing the expected reward value (magnitude x

probability) increases the task-related activations of par-

ietal neurons [45], and this increase is more important

than increasing magnitude or probability separately [53].

In an experiment that involves making choices with

varying magnitude and probability, parietal neurons track

the recently experienced reward value [54]. Other studies

that have investigated probabilistic coding report that

neurons in the superior colliculus and the pars reticulata

of substantia nigra show stronger target-expecting activity

with increasing target probability [55–57].

Figure 1

(a) Reward detection

(b) Reward-predicting stimulus

(c) Reward expectation

(d) Movement preparation

(e) Movement execution
Stimulus Movement

Time

Reward
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Schematic forms of reward coding. (a-e) show different forms explained in the text. Shaded areas represent activations in different neurons

during specific periods of behavioural tasks, reflecting specific forms of reward processing, including influences on movement preparation

and execution.
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Probabilistic reward tasks also allow the study of uncer-

tainty, which (as explained above) is maximal at p¼0.5.

A proportion of dopamine neurons show activity that

increases slowing toward the reward in the interval

between a conditioned stimulus and a reward. The ramp

is maximal at p¼0.5, is less prominent at lower and higher

probabilities and does not occur when the reward is

substituted by a visual stimulus. It could, therefore,

reflect reinforcer uncertainty [50]. Most of these dopa-

mine neurons also show phasic responses to reward-

predicting stimuli, although the two task modulations

are unrelated in occurrence and magnitude in individual

neurons (Figure 2). Neurons in the posterior cingulate

cortex show increased task-related activations as animals

choose rewards from probability distributions with larger

variance, which suggests a relationship to risk and uncer-

tainty [46].

Another factor influencing reward value is delay of

reward. The issue of reward delay has not yet been

addressed in neurophysiological studies, although the

neural coding of time is currently receiving much interest.

Activity in parietal neurons reflects the elapsed time of a

stimulus, and the time courses of activations follow the

temporal distributions of the delay [58�,59]. It would be

interesting to see how neurons process reward value and

reward expectation in such paradigms.

Although neurons in the secondary gustatory area of the

posterior orbitofrontal cortex appear to code certain phys-

ical characteristics of rewards, such as the glucose con-

centration of liquids and the texture of fat [60,61], some

neurons in other structures might code the relative, sub-

jective utility of rewards. In a recent experiment, it was

found that neurons in the orbitofrontal cortex show higher

activation when expecting a small piece of apple than

when expecting cereal. However, when in another trial

block the cereal is replaced by a piece of raisin that is even

more preferred by the animal, the same neurons show

higher activity for the raisin than for the apple (Figure 3;

[15]). Such neurons appear to be sensitive to the reward

that has the highest utility at a given moment for the

animal. The difference in neural activity between the

lowest and the highest utility increases the gain of coding

and thus enhances the ability of organisms to make fine

discriminations of utility within a given context. This

would be an advantage over a system that operated with

linear coding over all reward ranges and without context

dependency. In a related experiment, some neurons in

the dorsolateral prefrontal cortex show delay-related acti-

vations in unrewarded trials that depend on the prefer-

ence the animal has for the particular food or liquid

delivered in the rewarded trials of the same block

[38��]. The difference in activation in unrewarded trials

increases with the difference in value between the re-

warded and the unrewarded trials. Apparently, these

neurons have a representation of the current reward even

in unrewarded trials and indicate the value of reward that

the animal is missing. The results indicate that the

processing of expected reward utility occurs on the basis

of information from rewarded and unrewarded trials.

When neurons are investigated during choice behaviour,

activity of parietal neurons does not necessarily reflect the

expected value (magnitude x probability), but rather the

subjective utility that each option has for the animal in a

given trial [53]. Taken together, these experiments reveal

a neural correlate for the behavioural reward contrast

effect and appear to code the utility of rewarding out-

comes in microeconomic terms.

Reward prediction errors usually represent the scalar

difference in value (magnitude x probability) between

a delivered and a predicted reward. As some forms of

learning progress as a function of prediction error [6,7],

investigating the neural coding of prediction error should

provide insights into learning mechanisms for short or

long-term synaptic modification [62]. Dopamine neurons

appear to emit a reward prediction error signal, as they are

activated by rewards that are better than predicted,

uninfluenced by rewards that occur exactly as predicted

and depressed by rewards that are worse than predicted

[37,47,48,50,51,62,63]. The activation with positive pre-

diction errors follows a different slope than the depression

with negative prediction errors, which could be due to the

low background activity of dopamine neurons onto which

the depression needs to act [50]. The defining test for

the role of prediction errors in learning is the blocking

Figure 2

RewardPrediction Uncertainty

Reward400 msecStimulus (CS)
Time msec
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Two forms of behavior-related activation in dopamine neurons.

Phasic prediction error-related responses to rewards (‘Reward’, dark

grey) and reward-predicting stimuli (‘Prediction’, dark grey) occur in

the same neurons as uncertainty-related ramping activity

(‘Uncertainty’, black) during the interval between reward-predicting

stimuli and reward. Arrows indicate the onset of the conditioned
stimulus (CS, a stimulus that predicts reward) and the time of reward

delivery (Reward).
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paradigm, in which a stimulus that is paired with a fully

predicted reward is blocked from learning [6], and the

reward responses of dopamine neurons follow the notions

of blocking in all respects [36]. Dopamine neurons even

code prediction errors when the absence of reward is

explicitly predicted in a conditioned inhibition paradigm

[64]. Orbitofrontal and striatal neurons respond to unex-

pected rewards [31,65], and neurons in dorsolateral pre-

frontal cortex, anterior cingulate, posterior cingulate and

frontal eye fields are activated when a reward fails to

occur because of an error by the animal [66,67�,68],

although neural activity coding a bidirectional prediction

error as with dopamine neurons is not reported for these

structures.

Neural use of reward information
Neural responses to rewards, neural responses to reward-

predicting stimuli and activations occurring during the

expectation of rewards appear to be involved in the direct

detection of reward-related events. However, the neural

coding of reward information is not restricted to these

responses. Reward information is present during various

task components and influences neural responses to sti-

muli and activations related to the preparation and execu-

tion of arm and eye movements. These influences could

play a role in transferring reward information to neural

mechanisms involved in stimulus detection and discrimi-

nation, decision-making and movement initiation and

control. Reward influences on activations related to

movements might reflect representations of rewards

and action-reward contingencies that are a hallmark of

goal directed mechanisms (Figure 4; [1]).

The influence of rewards on neural responses to stimuli

and movement-related activations might lead to better

signal-to-noise ratios, higher neural discriminations of

stimulus and movement parameters, and, thus, higher

information content of neural signals. Indeed, neurons

in the striatum and the dorsolateral prefrontal cortex

show better discriminations (higher differences): during

movement preparation between movement and non-

movement reactions, during choice of spatial target

Figure 3
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Relative preference coding for food rewards in a single orbitofrontal neuron. (a) The neuron was tested in imperative trials in which a small

piece of either cereal or apple was made available after correct task performance or, (b) in a separate block of trials, a piece of apple or raisin.

The particular reward was indicated at trial onset by a specific instruction picture, shown above the neural histograms and rasters. The neurons

showed higher reward expectation-related activity for the preferred reward and thus had the higher utility for the animal (raisin preferred over

apple, and apple preferred over cereal). Instruction denotes the time of visual stimulus presentation indicating the target of movement and

predicting the kind of reward, trigger denotes stimulus that releases the movement. Dots denote neuronal impulses. Each line of dots shows one

trial. In (a) and (b), trials alternated randomly between the two rewards and are separated for analysis. Modified from [15].
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positions between rewarded trials and unrewarded trials

[23,25,29] and between preferred rewards and nonpre-

ferred rewards [20]. Neurons in the superior colliculus

show higher gains of visual responses in rewarded com-

pared to unrewarded trials [34]. Neuronal activations in

the dorsolateral prefrontal cortex show increased informa-

tion content about spatial position in rewarded compared

to unrewarded trials (from 0.2 to 0.4 bit in a 1 bit alter-

native with left-right positions) [30��]. Neurons in parietal

cortex are more selective for attended compared to unat-

tended stimuli, as expressed by increased neural signal

detection (d’), [68] and show better discrimination of

intended reaching targets and higher mutual information

with higher reward value (magnitude x probability) [45].

These data illustrate how the neural processing of reward

information could influence neural mechanisms related to

behavioural discrimination and goal-directed movement.

One of the key issues in neuroscience concerns the

processes that underlie decision-making. When deci-

sions concern goals and goal-directed movements, game

theory can become a powerful tool for neuroscience. On

the basis of simple variables such as, magnitude, prob-

ability and utility of reward, game theory has helped us to

understand behavioural decision processes made by indi-

viduals. The neural coding of basic game theory variables

would provide the inputs to decision-making mechan-

isms. This might involve, to some extent, Pavlovian

attribution of reward value to environmental stimuli.

However, straightforward reinforcement learning does

not produce optimal learning and performance in many

games, and more refined and heterogeneous information

and learning mechanisms are necessary, such as experi-

ence-weighted attraction learning [69]. Neurons in the

parietal cortex monitor the recently experienced reward

value in tasks in which animals match the frequency of

behavioural reactions to available reward frequencies

[54]. Such activity could constitute an input mechanism

for decision-making. The neural coding of relative

reward preference and utility in imperative trials [15]

and in a decision-making context [53] could in a similar

way provide input information for basic decision pro-

cesses. The next question to be asked is whether or not

there are forms of neural activity beyond tracking reward

value or utility that are closer to the decision process

itself. That type of activity should occur specifically in

decision situations and not in imperative trials without

much choice [70]. Studies on perceptual decision-

making and adaptation to changing instructions reveal

a diffusion-like race process in which neural activity rises

to a threshold beyond which the behavioural choice

occurs [71,72,73��,74,75]. The race model relies on con-

tinuously incoming information that brings the choice

process closer to a decision point. A similar mechanism

might also apply to certain reward-related decisions in

which reward values evolve slowly and approach a deci-

sion threshold, although that mechanism might not

necessarily be appropriate for all games.

Figure 4

TriggerInstruction 2 Sec

Reward

Reward

Sound

Movement
reward
-> goal-directed
    activity

No movement
reward
-> not just outcome
    expectation

Movement
no reward
-> not just action
    preparation

(a)

(b)

(c)
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Possible neural coding of goal-direction in a single neuron in the caudate nucleus. In each trial type, the neuronal responses of interest are

those recorded during the movement preparatory delay period, that is, during a period of time after the instruction to move (or not) had been

given, but before the ‘go signal’ or trigger to make the movement. (a) Only in rewarded movement trials (top) was the neural activity during the

delay period elevated over baseline. (b) Controls indicated no activation in non-movement trials and (c) in unrewarded movement trials. Thus,

the activation in (a) might represent a neural representation of the reward at the time at which one specific behavioral reaction for obtaining the

reward was being prepared. Sound denotes a conditioned reinforcer that signalled correct performance without having intrinsic reward value.

Data from [23].
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Conclusions
As rewards are defined by their influence on behaviour,

the neural processing of reward information should in-

clude a behavioural perspective. The basic parameters

of reward coding can be understood on the basis of

concepts from animal learning theory, game theory

and microeconomics. We are beginning to unravel the

way in which the brain extracts reward information from

multimodal stimuli and the way in which these para-

meters are coded in different brain structures. In addi-

tion, we might be on the way to understanding the brain

processes that are engaged when we make priority

decisions based on an evaluation of reward values. It

would help to have more general knowledge about the

neural mechanisms that underlie basic decision pro-

cesses in order to understand reward-directed decisions.

At the same time, because reward-directed decisions are

such a basic part of decision-making, their study might

be useful for a general understanding of general neural

decision-making processes.
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